BLOGGER TEMPLATES AND TWITTER BACKGROUNDS »

martes, 9 de junio de 2009

Conclusion o analisis

Nosotros tuvimos un muy buen conocimiento de estos temas ya que nos han brindado cosas buenas y algo que aprender. Nosotros aprendimos lo que era la celula, las partes uqe lo conformaban, lo que era en si la nutrición, el metabolismo, el ADN y el ARN, aprendimos lo que eran las teorias evolucionistas como la de darwin, lamarck y wallace.Aprendimos lo que era el catabolismo y el anabolismo en el metabolismo, el aparato reproductor femenino y masculino y las partes que lo conforma cada uno, cuales eran los metodos anticonceptivos para usarse al no querer un ambarazo y es más conveniente es el condon, eso fue todo lo hecho. Y agragamos un video

Pagina

http://losseres-vivos.blogspot.com/

Integrantes

Muñoz Fernandez Irma
Nuñez Alberto Gustavo
Zurita Lopez Magdalena

Teorias evolucionistas


El origen de la vidaSe han formulado muchas teorías para dar contestación a la duda sobre el nacimiento de la vida, muchas de ellas poco científicas.Ya en la ciencia, la Paleontología, que estudia especies animales de épocas pasadas, ha encontrado fósiles de hasta 500 millones de años de antigüedad. Pero, ¿qué pasó en las épocas anteriores? Esta respuesta sólo puede ser inferida. La Morfología Comparada es el estudio (comparado) de estructuras animales actuales y otras del pasado. Por ser las actuales descendientes de las otras, sus organismos son "huellas" del pasado; el problema es encontrar las claves para interpretar estas huellas.La vida se originó a través de mecanismos de síntesis. Astronomía, Física y Geología nos dan información sobre las posibles condiciones físicas de la época en que se originó, situación que se ha reproducido en experimentos químicos.En el proceso no está implicado ningún fenómeno sobrenatural, sino las leyes físicas y el tiempo.


LamarckEn 1809 Lamarck publica Filosofía zoológica. En esta obra plantea una serie de ideas sobre la evolución que le produjeron la enemistad de toda la comunidad científica. Según Lamarck, para adaptarse mejor a un medio, las especies desarrollan los órganos que le son más útiles y se les atrofian los que menos utilizan; los caracteres originales van siendo sustituidos por caracteres adquiridos o adaptativos. Niega la creación específica. La evolución es producto de los efectos del uso y desuso. Estos efectos heredados eran fruto del esfuerzo del animal por adaptarse y establecer nuevas relaciones con el medio.Observó que las rocas más antiguas contenían fósiles de seres más simples y que, a medida que las rocas eran más modernas, los seres se iban haciendo más complejos. Propuso 2 principios en su teoría:Uso y desuso de las partesHerencia de los caracteres adquiridosLas características adquiridas por el uso eran heredables para Lamarck. Los efectos de la interacción con el medio se transmitían a la generación siguiente. La función crea el órgano. Explica cómo a lo largo de millones de años la adaptación había creado las distintas especies, muchas de las cuales podrían provenir de un antepasado único.Sus teorías fueron primero criticadas y, luego, olvidadas; pero ayudaron a mentalizar sobre el evolucionismo. Weismann pretendía refutar experimentalmente la teoría de Lamarck. Así cortaba el rabo a los ratones cuando nacían. Según la teoría lamarckiana, tras varias generaciones tendrían que nacer sin rabo por el desuso. No fue así, seguían naciendo con rabo. P. ej.: los judíos llevan practicando la circuncisión durante miles de años, sin embargo, siguen naciendo con prepucio.LamarckismoEl lamarckismo fue una teoría propuesta en el siglo XIX por el biólogo francés Jean-Baptiste Lamarck para explicar la evolución de las especies.También conocida como herencia de caracteres adquiridos, su formulación más simple postulaba que los individuos podían adquirir o mejorar caracteres físicos durante su vida y que estos eran transmitidos a su descendencia. De esta forma, las especies evolucionarían acumulando los caracteres útiles que habían adquirido en vida sus antepasados.Fue la teoría dominante en el campo de la evolución durante gran parte del siglo XIX, incluso tras la formulación del mecanismo de selección natural por Darwin y Wallace. Sin embargo, el desarrollo de la genética mendeliana, con la separación de las líneas celulares somática y genética, la hizo incompatible con los hechos observados.El Lamarckismo inspiró a Trofim Denisovich Lysenko en la Unión Soviética durante los años 30 hasta los años 60 en una campaña en contra del conocimiento sobre genética adquirido en occidente.Aunque el lamarckismo biológico se considera una teoría obsoleta, en los últimos años ha vuelto a ponerse de actualidad como mecanismo para estudiar la evolución cultural, sobre todo a partir de la introducción del concepto de meme por Richard Dawkins.DarwinQuien explicó con claridad el mecanismo de la evolución fue Charles Darwin (1809-1882). En 1831 se embarcó en el Beagle. Le resultaban interesantes las especies exóticas y variadas de Sudamérica, y sus similitudes entre ellas y con los fósiles. En las Islas Galápagos, se interesó por las tortugas y los pinzones. Estos pájaros estaban presentes en todas las islas, pero cada una presentaba un tipo con diferencias suficientes como para ser consideradas como especies diferentes; a su vez, eran distintos de los pinzones del continente. Creyó encontrarse ante especies incipientes y que procedían por evolución de una sola.También se planteó la relación del hombre con los animales, antes incluso de elaborar una teoría concreta. Le pareció que el hombre debería estar incluido en una teoría general de la evolución. En 1836 empieza a ordenar sus datos.En 1838 conoció los escritos del economista Malthus sobre las poblaciones humanas (parece ser que la teoría de la evolución se le ocurrió leyéndolo). Malthus había realizado un estudio sobre la sociedad con las siguientes conclusiones:La humanidad estaba sometida a un grado de crecimiento que no se correspond ía con el de los recursos. La población crece en progresión geométrica, los alimentos en progresión aritmética. Llegará un momento en que habrá desabastecimiento.Según Darwin, lo que Malthus sostenía para el humano, era válido también para los animales. Éstos estarían sometidos a un proceso de crecimiento que les llevaría a la extinción, a no ser que hubiese un mecanismo que regulara que una especie no creciera espectacularmente la Selección Natural.

La celula animal y vegetal

Célula vegetal

Partes:
Membrana celular.-La membrana celular o plasmática es una estructura laminar que engloba a las células, define sus límites y contribuye a mantener el equilibrio entre el interior y el exterior de éstas. Además, se asemeja a las membranas que delimitan los orgánulos de células eucariotas.
La pared celular.-es una capa rígida que se localiza en el exterior de la membrana plasmática en las células de bacterias, hongos, algas y plantas. La pared celular protege los contenidos de la célula, da rigidez a la estructura celular, media en todas las relaciones de la célula con el entorno y actúa como compartimiento celular. Además, en el caso de hongos y plantas, define la estructura y otorga soporte a los tejidos
Vacuola.-es un orgánulo celular presente en plantas y en algunas células protistas eucariotas. Las vacuolas son compartimentos cerrados que contienen diferentes fluidos, tales como agua o enzimas, aunque en algunos casos puede contener sólidos. La mayoría de las vacuolas se forman a través de la fusión de múltiples vesículas de la membrana.
Núcleo celular.- es una estructura característica de las células eucariotas. Contiene la mayor parte del material genético celular, organizado en cromosomas, basados cada uno en una hebra de ADN con acompañamiento de una gran variedad de proteínas, como las histonas. Los genes que se localizan en estos cromosomas constituyen el genoma nuclear de la célula eucariótica, donde se encuentran otros genomas, propio de algunos orgánulos de origen endosimbiótico. La función del núcleo es mantener la integridad de estos genes y controlar las actividades celulares a través de la expresión génica.
Ribosomas.- son complejos supramoleculares encargados de sintetizar proteínas a partir de la información genética que les llega del ADN transcrita en forma de ARN mensajero (ARNm). Sólo son visibles al microscopio electrónico, debido a su reducido tamaño.Cloroplastos.-Los cloroplastos son los orgánulos celulares que en los organismos eucariontes fotosintetizadores se ocupan de la fotosíntesis. Están limitados por una envoltura formada por dos membranas concéntricas y contienen vesículas, los tilacoides, donde se encuentran organizados los pigmentos y demás moléculas que convierten la energía luminosa en energía

Célula animal
Partes:1.-Membrana Celular: Es el limite externo de la célula formada por fosfolipido y su función es delimitar la célula y controlar lo que sale e ingresa de la célula.Mitocondria: diminuta estructura celular de doble membrana responsable de la conversión de nutrientes en el compuesto rico en energía trifosfato de adenosina (ATP), que actúa como combustible celular. Por esta función que desempeñan, llamada respiración, se dice que las mitocondrias son el motor de la célula.2.-Cromatina: complejo macromolecular formado por la asociación de ácido desoxirribonucleico o ADN y proteínas básicas, las histonas, que se encuentra en el núcleo de las células eucarióticas.Lisosoma: Saco delimitado por una membrana que se encuentra en las células con núcleo (eucarióticas) y contiene enzimas digestivas que degradan moléculas complejas. Los lisosomas abundan en las células encargadas de combatir las enfermedades, como los leucocitos, que destruyen invasores nocivos y restos celulares.Aparato de Golgi: Parte diferenciada del sistema de membranas en el interior celular, que se encuentra tanto en las células animales como en las vegetales.3.-Citoplasma: El citoplasma comprende todo el volumen de la célula, salvo el núcleo. Engloba numerosas estructuras especializadas y orgánulos, como se describirá más adelante.4.-Nucleoplasma: El núcleo de las células eucarióticas es una estructura discreta que contiene los cromosomas, recipientes de la dotación genética de la célula. Está separado del resto de la célula por una membrana nuclear de doble capa y contiene un material llamado nucleoplasma. La membrana nuclear está perforada por poros que permiten el intercambio de material celular entre nucleoplasma y citoplasma.
5.-Núcleo: El órgano más conspicuo en casi todas las células animales y vegetales es el núcleo; está rodeado de forma característica por una membrana, es esférico y mide unas 5 µm de diámetro. Dentro del núcleo, las moléculas de ADN y proteínas están organizadas en cromosomas que suelen aparecer dispuestos en pares idénticos. Los cromosomas están muy retorcidos y enmarañados y es difícil identificarlos por separado.12)Nucleolo: Estructura situada dentro del núcleo celular que interviene en la formación de los ribosomas (orgánulos celulares encargados de la síntesis de proteínas). El núcleo celular contiene típicamente uno o varios nucleolos, que aparecen como zonas densas de fibras y gránulos de forma irregular. No están separados del resto del núcleo por estructuras de membrana.
6.-Centríolos: Cada una de las dos estructuras de forma cilíndrica que se encuentran en el centro de un orgánulo de las células eucarióticas denominado centrosoma. Al par de centríolos se conoce con el nombre de diplosoma; éstos se disponen perpendicularmente entre sí.7.-Ribosoma: Corpúsculo celular que utiliza las instrucciones genéticas contenidas en el ácido ribonucleico (ARN) para enlazar secuencias específicas de aminoácidos y formar así proteínas. Los ribosomas se encuentran en todas las células y también dentro de dos estructuras celulares llamadas mitocondrias y cloroplastos. Casi todos flotan libremente en el citoplasma (el contenido celular situado fuera del núcleo), pero muchos están enlazados a redes de túbulos envueltos en membranas que ocupan toda la masa celular y constituyen el llamado retículo endoplasmático.










ADN y ARN

ADN.-Ácido desoxirribonucleico (ADN), material genético de todos los organismos celulares y casi todos los virus. El ADN lleva la información necesaria para dirigir la síntesis de proteínas y la replicación. Se llama síntesis de proteínas a la producción de las proteínas que necesita la célula o el virus para realizar sus actividades y desarrollarse. La replicación es el conjunto de reacciones por medio de las cuales el ADN se copia a sí mismo cada vez que una célula o un virus se reproducen y transmite a la descendencia la información que contiene. En casi todos los organismos celulares el ADN está organizado en forma de cromosomas, situados en el núcleo de la célula.


ARN.-Material genético de ciertos virus (virus ARN) y, en los organismos celulares, molécula que dirige las etapas intermedias de la síntesis proteica. En los virus ARN, esta molécula dirige dos procesos: la síntesis de proteínas (producción de las proteínas que forman la cápsula del virus) y replicación (proceso mediante el cual el ARN forma una copia de sí mismo). En los organismos celulares es otro tipo de material genético, llamado ácido desoxirribonucleico (ADN), el que lleva la información que determina la estructura de las proteínas. Pero el ADN no puede actuar solo, y se vale del ARN para transferir esta información vital durante la síntesis de proteínas (producción de las proteínas que necesita la célula para sus actividades y su desarrollo).


Como el ADN, el ARN está formado por una cadena de compuestos químicos llamados nucleótidos. Cada uno está formado por una molécula de un azúcar llamado ribosa, un grupo fosfato y uno de cuatro posibles compuestos nitrogenados llamados bases: adenina, guanina, uracilo y citosina. Estos compuestos se unen igual que en el ácido desoxirribonucleico (ADN). El ARN se diferencia químicamente del ADN por dos cosas: la molécula de azúcar del ARN contiene un átomo de oxígeno que falta en el ADN; y el ARN contiene la base uracilo en lugar de la timina del ADN.

Metabolismo


El metabolismo es el conjunto de reacciones y procesos físico-químicos que ocurren en una célula y en el organismo.[1] Estos complejos procesos interrelacionados son la base de la vida a nivel molecular, y permiten las diversas actividades de las células: crecer, reproducirse, mantener sus estructuras, responder a estímulos, etc.El metabolismo se divide en dos procesos conjugados: catabolismo y anabolismo. Las reacciones catabólicas liberan energía; un ejemplo es la glucólisis, un proceso de degradación de compuestos como la glucosa, cuya reacción resulta en la liberación de la energía retenida en sus enlaces químicos. Las reacciones anabólicas, en cambio, utilizan esta energía liberada para recomponer enlaces químicos y construir componentes de las células como lo son las proteínas y los ácidos nucleicos. El catabolismo y el anabolismo son procesos acoplados que hacen al metabolismo en conjunto, puesto que cada uno depende del otro.


Anabolismo.-El anabolismo o biosíntesis es una de las dos partes del metabolismo, encargada de la síntesis o bioformación de moléculas orgánicas (biomoléculas) más complejas a partir de otras más sencillas o de los nutrientes, con requerimiento de energía (reacciones endergónicas), al contrario que el catabolismo.


El catabolismo es la parte del metabolismo que consiste en la transformación de moléculas orgánicas o biomoléculas complejas en moléculas sencillas y en el almacenamiento de la energía química desprendida en forma de enlaces de fosfato y de moléculas de ATP, mediante la destrucción de las moléculas que contienen gran cantidad de energía en los enlaces covalentes que la forman, en reacciones químicas exotérmicas.El catabolismo es el proceso inverso del anabolismo. La palabra catabolismo procede del griego kata que significa hacia abajo.